
CS3485
Deep Learning for Computer Vision

Lec 18: Image Generation with GANs

Announcements

■ Lab 6 is out!
■ A pic from one of the conference’s keynote:

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Generative Models

■ Last time, we saw an important unsupervised
learning task called dimensionality reduction.

■ Another very important unsupervised task is called
Generative Modelling (or Generative AI):

Generative modeling is the task that aims at
learning a model that is capable of generating

unseen data instances according to the patterns
learned in a given dataset.

■ In CV, this task refers to learning how to generate
new images from an available image dataset.

■ An example of this is, for example, how can we
generate new handwritten digits for MNIST?

The digits above were artificially generated
(there are not in the original MNIST dataset.

Image Generation

■ The task of Image Generation plays an important
role in in the study of Computer VIsion and Human
Perception as well, because, according to the
physics nobel prize winner Richard Feynman,

“What one cannot create, one does not
understand”

■ Today, we’ll dive into one of the most popular and
powerful frameworks for that task in Deep
Learning called Generative Adversarial Networks
(GANs), published in 2014.

■ GANs’ results have in fact revolutionize AI in many
domains (like the one of artificial face generation)! These people don’t exist! Check out more in here.

https://arxiv.org/pdf/1406.2661.pdf
https://thispersondoesnotexist.com/

Generative Adversarial Networks

■ In this setting, we have a dataset of images (no labels) at our disposal and we’d like to
find a model/algorithm that generates a new image that resembles those in the dataset.

■ Furthermore, we’d like to generate different realistic images each time we run it.
■ GANs’ approach to solve it is simple: we give a random vector z (like noise sampled from

a normal distribution) to a network, called the Generator G, that outputs an image G(z).

Generator
Network (G)

z G(z)

Generative Adversarial Networks

■ The challenge is on how we train G. For that reason, GANs have another network called
Discriminator D, that classifies images in real or fake.

■ If the image y is a generated image, D(y) = 0, meaning it is fake. If y is real, D(y) = 1.
■ This means that, if D is well trained, we should have D(x) = 1, for any image x from our

image dataset, and D(G(z)) = 0, for any random vector z.

Generator
Network (G)

z

Dataset of Real
Images

Discriminator
Network (D)

Is it Fake or
Real?

G(z)

x

Intuition behind Generative Adversarial Networks

■ The “Adversarial” from GAN is such because the Discriminator and the Generator are
supposed the be competing networks (adversaries) that are trying beat each other.

■ The allegory for this clash is usually that of a artistic forger and an “art” detective:
● The Generator (the forger) tries to create artwork that fools the detective to think that those

pieces are real!
● The Discriminator (the detective) learns what to discriminate between real and the forged

artwork by learning from some examples of fake and real data.

■ In this process both the forger and the detective get better at what they do!
● With a better detective around, the forger needs to learn how to draw more realistic paintings

compared to the real artwork.
● With the access to better forged artwork, the detective needs to learn to detect finer details that

differentiate the real and the forged artwork.

■ After repeating this back and forth a few times, the forger learns to draw very realistically!

■ The Training of a GAN involves two steps that alternate:

■ The final goal is to generate images from the Generator such that they are classified
incorrectly by a well trained Discriminator.

■ We repeat this process until the generated images are (subjectively) “realistic enough”.

Training the GAN

Step 1:
Train the Discriminator using the

current ability of the Generator.

Step 2:
Train the Generator to beat the most

recently trained Discriminator.

■ The Generator/Discriminator strife can expressed by two optimization problems*:
● For G fixed, we want to find D that outputs 1 for inputs coming from the dataset (i.e., maximizes

the D(x)) and 0 to those inputs coming from the generator (i.e., minimizes D(G(z))):

● For D fixed, we find G that fools the discriminator as much as possible, meaning, it makes D
output 1 to images generated by it, i.e., maximizes D(G(z)) (which is like minimizing -D(G(z))):

■ In GAN’s literature, we usually put those problems together in a min-max optimization:

Math in GANs

* The logs are in the formulas to make the statistics behind them precise. For the intuition above, you can “forget” they are in there.

The losses in GANs

■ The previous formulas can be easily translated to two losses Cross Entropy losses.
■ In our case Binary Cross Entropy (BCE)*, since the discriminator only outputs two

possible classes: 1 (real) or 0 (fake).
● For a real image x from the dataset and and random vector z, we want D(x) to be as close as

possible to 1 and D(G(z)) to as close as possible to 0. The Discriminator loss is then given by:

● For a random vector z, we want D(G(z)) to be as close as possible to 1. The Generator loss is
then given by:

■ Finally, we’ll consider that z is a vector whose values are normally distributed with mean
0 and variance 1.

* Reminder: the BCE loss for one prediction ŷ / true label y pair is

GANs in Pytorch

■ We’ll now create a GAN with the weights described in the previous slides to generate
new MNIST digits.

■ To that end, we first load the training images from MNIST:

import torch

from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
from torchvision import transforms

device = "cuda" if torch.cuda.is_available() else "cpu"

transform = transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize(mean=(0.5,), std=(0.5,)) # The image values will be approximately on a
 # [-0.5, 1.5] range, since std = 0.5.
])

train_dataset = MNIST('~/data', train=True, download=True, transform=transform)
data_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)

GANs in Pytorch

discriminator = nn.Sequential(
 nn.Linear(784, 1024),
 nn.ReLU(),
 nn.Linear(1024, 512),
 nn.ReLU(),
 nn.Linear(512, 128),
 nn.ReLU(),
 nn.Linear(128, 1),
 nn.Sigmoid()
).to(device)

generator = nn.Sequential(
 nn.Linear(100, 128),
 nn.ReLU(),
 nn.Linear(128, 512),
 nn.ReLU(),
 nn.Linear(512, 1024),
 nn.ReLU(),
 nn.Linear(1024, 784),
 nn.Tanh()
).to(device)

import torch.nn as nn

■ Now, we create our two networks, both being Multilayer Perceptrons, for simplicity:
● The generator network transforms a (random) input of size 100 into an output of size 784

(remember that MNIST images are 28×28). We use Tanh(), because its range is [-1, 1] (a bit
similar to our image value range) and because it works best in practice.

● The discriminator network has a 784 vector as input and outputs either 0 or 1 (fake or real).

https://machinelearningmastery.com/how-to-train-stable-generative-adversarial-networks/

GANs in Pytorch

■ We just need to define two separate optimizers for the discriminator and for the
generator (Adam as always):

■ And we also define a function to plot the eventual newly generated MNIST data:

import torch.optim as optim

d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002)

from torchvision.utils import make_grid
from torch_snippets import show

def plot_samples():
 z = torch.randn(64, 100).to(device)
 sample_images = generator(z).data.cpu().view(64, 1, 28, 28)
 grid = make_grid(sample_images, nrow=8, normalize=True)
 show(grid.cpu().detach().permute(1,2,0), sz=5)

■ We define our loss (BCE):

■ And now, we can create a function to
train the generator. Note that its goal is
to make the discriminator output 1 (or as
close as possible to it) when it input is
made of a batch of fake data.

GANs in Pytorch

■ We also create a function that outputs a matrix of random normally distributed numbers
of dimension n × 100, where n is the number of images in a training batch.

def noise(batch_size):
 n = torch.randn(batch_size, 100)
 return n.to(device)

loss = nn.BCELoss()

def generator_train_step(fake_data):
 n = len(real_data)
 vec_ones = torch.ones(n, 1).to(device)

 g_optimizer.zero_grad()

 prediction = discriminator(fake_data)
 error = loss(prediction, vec_ones)
 error.backward()

 g_optimizer.step()
 return error

GANs in Pytorch

■ Then we also create a function to train the discriminator, which takes into account
batches of both real and fake data and follows the loss described previously:

def discriminator_train_step(real_data, fake_data):
 n = len(real_data)
 vec_ones = torch.ones(n, 1).to(device)
 vec_zeros = torch.zeros(n, 1).to(device)

 d_optimizer.zero_grad()

 prediction_real = discriminator(real_data)
 error_real = loss(prediction_real, vec_ones)
 error_real.backward()

 prediction_fake = discriminator(fake_data)
 error_fake = loss(prediction_fake, vec_zeros)
 error_fake.backward()

 d_optimizer.step()
 return error_real + error_fake

GANs in Pytorch

■ Now, our final step is to take turns training the generator and the discriminator for
batches of images and plot generated samples as we go:

num_epochs = 200
for epoch in range(num_epochs):
 N = len(data_loader)
 for _, (images, _) in enumerate(data_loader):
 n_images = len(images)
 real_data = images.view(n_images, -1).to(device)

 fake_data = generator(noise(n_images)).to(device).detach()
 d_loss = discriminator_train_step(real_data, fake_data)

 fake_data = generator(noise(n_images)).to(device)
 g_loss = generator_train_step(fake_data)

 if (epoch + 1) % 5 == 0:
 plot_samples()
 print(f"Epoch: {epoch + 1}")

GANs in Pytorch

■ Now, our final step is to take turns training the generator and the discriminator for
batches of images and plot generated samples as we go:

num_epochs = 200
for epoch in range(num_epochs):
 N = len(data_loader)
 for _, (images, _) in enumerate(data_loader):
 n_images = len(images)
 real_data = images.view(n_images, -1).to(device)

 fake_data = generator(noise(n_images)).to(device).detach()
 d_loss = discriminator_train_step(real_data, fake_data)

 fake_data = generator(noise(n_images)).to(device)
 g_loss = generator_train_step(fake_data)

 if (epoch + 1) % 5 == 0:
 plot_samples()
 print(f"Epoch: {epoch + 1}")

We first flatten the images.

Here we transform noise into new,
generated data to train the

discriminator. Note that it is important
to use detach() on the generated

data. On detaching, we are creating a
fresh copy of the tensor so that when
error.backward() is called in
discriminator_train_step ,

the tensors associated with the
generator (which create fake_data)

are not affected (they are fixed).

We then train the discriminator on the
real and on the newly generated data.

■ Now, our final step is to take turns training the generator and the discriminator for
batches of images and plot generated samples as we go:

GANs in Pytorch

num_epochs = 200
for epoch in range(num_epochs):
 N = len(data_loader)
 for _, (images, _) in enumerate(data_loader):
 n_images = len(images)
 real_data = images.view(n_images, -1).to(device)

 fake_data = generator(noise(n_images)).to(device).detach()
 d_loss = discriminator_train_step(real_data, fake_data)

 fake_data = generator(noise(n_images)).to(device)
 g_loss = generator_train_step(fake_data)

 if (epoch + 1) % 5 == 0:
 plot_samples()
 print(f"Epoch: {epoch + 1}")

Now we generate more data to train
the generator now. Note that we

don’t need to detach this part, since
we do want the generator tensors to

be affected (we are training then
here, after all).

We now train the generator with the
newly generated fake data.

We now just need to plot samples
from our generator every once in a

while.

■ Here are some results of the previous code (because of the randomness involved, you
may see very different samples):

■ Note how the samples get sharper as we train the network for longer.

GANs in Pytorch

Samples after 5 epochs Samples after 20 epochs Samples after 100 epochs Samples after 200 epochs

Exercise (In pairs)

■ Use the same code from before to generate some samples from the Fashion MNIST
dataset. It may take around 5 min to get through a 50 epochs.

Click here to open code in Colab

https://colab.research.google.com/drive/1t-ok27r2xQX82rgPCBJXdMsdgR6au9GA?usp=sharing
https://colab.research.google.com/drive/1t-ok27r2xQX82rgPCBJXdMsdgR6au9GA?usp=sharing

Deep Convolutional GANs

■ In practice, many GAN implementations heavily
use Convolutional Layers instead of Dense
Layers for problems in Computer Vision.

■ The main reason for this interest is due to the
CNN capacity to learn very good visual features
(as we saw with VGG and GoogLeNet) and
generate very photorealistic images.

■ Historically, this approach was introduced to the
GAN community with Deep Convolutional GAN
(DCGAN), proposed in 2015.

■ Its author’s intention was to create a
Self-Supervised model for Image Generation!

https://arxiv.org/pdf/1511.06434.pdf

Deep Convolutional GANs

■ DCGAN makes the following some important changes to the traditional architecture
(also called Vanilla GAN) we saw previously. Some of these changes are:
● Replacing any pooling layers with (strided) ConvLayers in the discriminator and (strided)

Transpose ConvLayers in the generator.
● Removing fully connected hidden layers in order to get deeper architectures.
● Using only ReLU activation in generator and Leaky ReLU activation in the discriminator.

Generator for DCGAN ReLU (left) vs. Leaky ReLU (right)

Deep Convolutional GANs

■ The authors of DCGAN implemented Leaky ReLU to solve a known issue with usual
ReLU: The Dying ReLU Problem (DRP).

■ The DRP refers to the scenario when many ReLU neurons only output values of 0,
because their input happens to usually be negative numbers.

■ When this happens, the gradients fail to flow during backpropagation, and the weights
don’t get updated. Ultimately a large part of the network becomes inactive, and it is
unable to learn further.

■ Leaky ReLU solves this problem by having negative inputs lead to non-zero outputs.
■ In PyTorch, you can implement the Leaky ReLU activation using the following:

where negative_slope is the same as a in the previous slide.

nn.LeakyReLU(negative_slope=0.01)

DCGAN results

■ Using this approach DCGAN is able to learn faster and more efficiently and eventually
generate interestingly looking images.

■ These results were taken from this official DCGAN tutorial (one of the few) from PyTorch.

Real images used in training Images generated by DCGAN

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

DCGAN results

■ In the DCGAN paper, the authors showed that their method is able to generate
(somewhat) realistic bedroom scenes when trained on the LSUN Dataset (for indoor
scenes):

https://www.yf.io/p/lsun

DCGAN results

■ They also showed that interpolating latent representations (the z’s), we also interpolate
the generated images from those representations.

■ Below, it is possible to transition from one pose to another!

DCGAN results

■ It is even possible to
do arithmetic with
the latent vectors
and get that
arithmetic reflected
in visual concepts.

■ For example, + and -
on the latent space
represent removal or
introduction of visual
concepts on the
image space.

Mode Collapse when training GANs

■ A common challenge of training GANs (at least
in its vanilla form, which is what we saw so far)
is its susceptibility to Mode Collapse.

■ Mode Collapse happens when the generator
fails to generate samples that are as diverse as
the distribution of the real-world data.

■ It happens because the generator finds a way
to generate data that easily beats the
discriminator and then it focus on generating
only that kind of data.

■ That kind of data (which usually is one available
data class) is called a mode of the data.

GAN Mode Collapse when training a vanilla GAN
on MNIST data

http://www.youtube.com/watch?v=ktxhiKhWoEE

Mode Collapse when training GANs

■ One intuitive way to see how Mode Collapse and other problems when training Vanilla
GANs can happen is found in its discriminator:
● It is like a teacher who only says “pass”/“fail” to a student and nothing more.
● It therefore does not give much of information to the generator about how to improve itself.

■ A typical solution to this issue is to use Wasserstein GAN, published in 2017, where it
replaces the discriminator by a critic:
● It doesn’t simply checks “fake or real” (discrete options), by it gives an continuous unbounded

output (any real number), such that, the higher that number, the more real it is.
● This gives the generator more information from the discriminator to work on (think of a teacher

which doesn’t just say “pass”/“fail”, but also says how close you are from passing and failing).
● To do so, they use a different (by even simpler) loss function, called Wasserstein Loss, which

has (beautiful) connections to Optimal Transport Theory.

■ Before we finish: there is this cool website, called GAN Lab, where you can visualize
what GANs are learning in their training process.

https://arxiv.org/abs/1701.07875
https://poloclub.github.io/ganlab/

Video: AI Generated Music and Music Video

http://www.youtube.com/watch?v=Emidxpkyk6o
http://www.youtube.com/watch?v=0fDJXmqdN-A

